Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(5): 5429-5439, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343925

RESUMO

Iostephane heterophylla is a traditional Mexican medicinal plant and is an important source of secondary metabolites with antimicrobial and cytotoxic activity. The aim of this work was to conduct a comparative analysis of secondary metabolites of different roots and leaf extracts of I. heterophylla from two zones in Mexico using ultraperformance liquid chromatography (UPLC) and gas chromatography (GC) coupled with mass spectrometry (MS). Twelve secondary metabolites from roots were identified in the leaves. Five new molecular weight secondary metabolites not previously reported were found. Six bioactive metabolites were quantified (quercetin ≤0.151 mg/mL in root and ≤0.041 mg/mL in leaf; hesperidin ≤0.66 mg/mL in root and ≤0.173 mg/mL in leaf; epicatechin ≤0. 163 mg/mL in root and ≤0.664 mg/mL in leaf; caffeic acid ≤0.372 mg/mL in root and ≤0.393 mg/mL in leaf; chlorogenic acid ≤0.234 mg/mL in root and ≤0.328 mg/mL in leaf; and xanthorrhizol ≤0.667 mg/mL in root), and a selective extraction method was established: quercetin in root and leaf by reflux; hesperidin in leaf by Soxhlet and in leaf by reflux; chlorogenic acid in root by Soxhlet and in leaf by reflux; chlorogenic acid ≤0.234 mg/mL in root and ≤0.328 mg/mL in leaf by ultrasound-assisted extraction; epicatechin in root by ultrasound-assisted extraction; caffeic acid in root by reflux and in leaf by Soxhlet. The most efficient solvent was methanol. This study provides a new secondary metabolite profile found in the leaves of I. heterophylla, highlighting it is an essential source of three bioactive compounds: epicatechin, hesperidin, and quercetin.

2.
Curr Med Chem ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37909441

RESUMO

BACKGROUND: Parasitic diseases are a public health problem despite the existence of drugs for their treatment. These treatments have variable efficacy and, in some cases, serious adverse effects. There has been interest in the enzyme carbonic anhydrase (CA) in the last two decades since it is essential in the life cycle of various parasites due to its important participation in processes such as pyrimidine synthesis, HCO3- transport across cell membranes, and the maintenance of intracellular pH and ion transport (Na+, K+, and H+), among others. OBJECTIVE: In this review, CA was analyzed as a pharmacological target in etiological agents of malaria, American trypanosomiasis, leishmaniasis, amoebiasis, and trichomoniasis. The CA inhibitors´ design, binding mode, and structure-activity relationship are also discussed. CONCLUSION: According to this review, advances in discovering compounds with potent inhibitory activity suggest that CA is a candidate for developing new antiprotozoal agents.

3.
Pharmaceutics ; 15(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631260

RESUMO

Cutaneous leishmaniasis (CL) is a public health problem affecting more than 98 countries worldwide. No vaccine is available to prevent the disease, and available medical treatments cause serious side effects. Additionally, treatment failure and parasite resistance have made the development of new drugs against CL necessary. In this work, a virtual screening of natural products from the BIOFACQUIM and Selleckchem databases was performed using the method of molecular docking at the triosephosphate isomerase (TIM) enzyme interface of Leishmania mexicana (L. mexicana). Finally, the in vitro leishmanicidal activity of selected compounds against two strains of L. mexicana, their cytotoxicity, and selectivity index were determined. The top ten compounds were obtained based on the docking results. Four were selected for further in silico analysis. The ADME-Tox analysis of the selected compounds predicted favorable physicochemical and toxicological properties. Among these four compounds, S-8 (IC50 = 55 µM) demonstrated a two-fold higher activity against the promastigote of both L. mexicana strains than the reference drug glucantime (IC50 = 133 µM). This finding encourages the screening of natural products as new anti-leishmania agents.

4.
J Mol Model ; 29(6): 180, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37195391

RESUMO

CONTEXT: Quinoxaline 1,4-di-N-oxide is a scaffold with a wide array of biological activities, particularly its use to develop new antiparasitic agents. Recently, these compounds have been described as trypanothione reductase (TR), triosephosphate isomerase (TIM), and cathepsin-L (CatL) inhibitors from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica, respectively. METHODS: Therefore, the main objective of this work was to analyze quinoxaline 1,4-di-N-oxide derivatives of two databases (ZINC15 and PubChem) and literature by molecular docking, dynamic simulation and complemented by MMPBSA, and contact analysis of molecular dynamics' trajectory on the active site of the enzymes to know their potential effect inhibitory. Interestingly, compounds Lit_C777 and Zn_C38 show preference as potential TcTR inhibitors over HsGR, with favorable energy contributions from residues including Pro398 and Leu399 from Z-site, Glu467 from γ-Glu site, and His461, part of the catalytic triad. Compound Lit_C208 shows potential selective inhibition against TvTIM over HsTIM, with favorable energy contributions toward TvTIM catalytic dyad, but away from HsTIM catalytic dyad. Compound Lit_C388 was most stable in FhCatL with a higher calculated binding energy by MMPBSA analysis than HsCatL, though not interacting with catalytic dyad, holding favorable energy contribution from residues oriented at FhCatL catalytic dyad. Therefore, these kinds of compounds are good candidates to continue researching and confirming their activity through in vitro studies as new selective antiparasitic agents.


Assuntos
Fasciola hepatica , Trichomonas vaginalis , Trypanosoma cruzi , Animais , Simulação de Acoplamento Molecular , Antiparasitários
5.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362102

RESUMO

American trypanosomiasis is a worldwide health problem that requires attention due to ineffective treatment options. We evaluated n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives against trypomastigotes of the Trypanosoma cruzi strains NINOA and INC-5. An in silico analysis of the interactions of 1,4-di-N-oxide on the active site of trypanothione reductase (TR) and an enzyme inhibition study was carried out. The n-butyl series compound identified as T-150 had the best trypanocidal activity against T. cruzi trypomastigotes, with a 13% TR inhibition at 44 µM. The derivative T-147 behaved as a mixed inhibitor with Ki and Ki' inhibition constants of 11.4 and 60.8 µM, respectively. This finding is comparable to the TR inhibitor mepacrine (Ki = 19 µM).


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Quinoxalinas/química , Óxidos/farmacologia , NADH NADPH Oxirredutases , Doença de Chagas/tratamento farmacológico , Inibidores Enzimáticos/química
6.
Med Chem ; 19(1): 91-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35975866

RESUMO

BACKGROUND: Currently, protozoan infectious diseases affect billions of people every year. Their pharmacological treatments offer few alternatives and are restrictive due to undesirable side effects and parasite drug resistance. OBJECTIVE: In this work, three ontology-based approaches were used to identify shared potential drug targets in five species of protozoa. METHODS: In this study, proteomes of five species of protozoa: Entamoeba histolytica (E. histolytica), Giardia lamblia (G. lamblia), Trichomonas vaginalis (T. vaginalis), Trypanosoma cruzi (T. cruzi), and Leishmania mexicana (L. mexicana), were compared through orthology inference using three different tools to identify potential drug targets. RESULTS: Comparing the proteomes of E. histolytica, G. lamblia, T. vaginalis, T. cruzi, and L. mexicana, twelve targets for developing new drugs with antiprotozoal activity were identified. CONCLUSION: New drug targets were identified by orthology-based analysis; therefore, they could be considered for the development of new broad-spectrum antiprotozoal drugs. Particularly, triosephosphate isomerase emerges as a common target in trypanosomatids and amitochondriate parasites.


Assuntos
Antiprotozoários , Giardia lamblia , Leishmania mexicana , Infecções por Protozoários , Trichomonas vaginalis , Humanos , Proteoma/farmacologia , Infecções por Protozoários/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico
7.
Molecules ; 27(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35630802

RESUMO

Spodoptera frugiperda (S. frugiperda) remains a global primary pest of maize. Therefore, new options to combat this pest are necessary. In this study, the insecticidal activity of three crude foliar extracts (ethanol, dichloromethane, and hexane) and their main secondary metabolites (quercetin and chlorogenic acid) of the species Solidago graminifolia (S. graminifolia) by ingestion bioassays against S. frugiperda larvae was analyzed. Additionally, the extracts were phytochemically elucidated by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Finally, an in silico study of the potential interaction of quercetin on S. frugiperda acetylcholinesterase was performed. Organic extracts were obtained in the range from 5 to 33%. The ethanolic extract caused higher mortality (81%) with a half-maximal lethal concentration (LC50) of 0.496 mg/mL. Flavonoid secondary metabolites such as hyperoside, quercetin, isoquercetin, kaempferol, and avicularin and some phenolic acids such as chlorogenic acid, solidagoic acid, gallic acid, hexoside, and rosmarinic acid were identified. In particular, quercetin had an LC50 of 0.157 mg/mL, and chlorogenic acid did not have insecticidal activity but showed an antagonistic effect on quercetin. The molecular docking analysis of quercetin on the active site of S. frugiperda acetylcholinesterase showed a -5.4 kcal/mol binding energy value, lower than acetylcholine and chlorpyrifos (-4.45 and -4.46 kcal/mol, respectively). Additionally, the interactions profile showed that quercetin had π-π interactions with amino acids W198, Y235, and H553 on the active site.


Assuntos
Asteraceae , Inseticidas , Solidago , Acetilcolinesterase , Animais , Ácido Clorogênico/farmacologia , Cromatografia Líquida , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Spodoptera , Espectrometria de Massas em Tandem
8.
Mol Divers ; 26(4): 2025-2037, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34529209

RESUMO

The development of new, more selective, environmental-friendly insecticide alternatives is in high demand for the control of Spodoptera frugiperda (S. frugiperda). The major objective of this work was to search for new potential S. frugiperda acetylcholinesterase (AChE) inhibitors. A ligand-based virtual screening was initially carried out considering six scaffolds derived from eugenol and the ZINC15, PubChem, and MolPort databases. Subsequently, molecular docking analysis of the selected compounds on the active site and a second region (determined by blind molecular docking) of the AChE of S. frugiperda was performed. Molecular dynamics and Molecular Mechanics Poisson-Boltzmann Surface Area analyses were also applied to improve the docking results. Finally, three new eugenol analogs were evaluated in vitro against S. frugiperda larvae. The virtual screening identified 1609 compounds from the chemical libraries. Control compounds were selected from the interaction fingerprint by molecular docking. Only three new eugenol analogs (1, 3, and 4) were stable at 50 ns by molecular dynamics. Compounds 1 and 4 had the best biological activity by diet (LC50 = 0.042 mg/mL) and by topical route (LC50 = 0.027 mg/mL), respectively. At least three new eugenol derivatives possessed good-to-excellent insecticidal activity against S. frugiperda.


Assuntos
Inibidores da Colinesterase , Inseticidas , Acetilcolinesterase/metabolismo , Animais , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Eugenol/farmacologia , Inseticidas/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Spodoptera
9.
Mini Rev Med Chem ; 22(4): 586-599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34353256

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is one of the most serious and prevalent diseases worldwide. In the last decade, type 2 sodium-glucose cotransporter inhibitors (iSGLT2) were approved as alternative drugs for the pharmacological treatment of T2DM. The anti-hyperglycemic mechanism of action of these drugs involves glycosuria. In addition, SGLT2 inhibitors cause beneficial effects such as weight loss, a decrease in blood pressure, and others. OBJECTIVE: This review aimed to describe the origin of SGLT2 inhibitors and analyze their recent development in preclinical and clinical trials. RESULTS: In 2013, the FDA approved SGLT2 inhibitors as a new alternative for the treatment of T2DM. These drugs have shown good tolerance with few adverse effects in clinical trials. Additionally, new potential anti-T2DM agents based on iSGLT2 (O-, C-, and N-glucosides) have exhibited a favorable profile in preclinical evaluations, making them candidates for advanced clinical trials. CONCLUSION: The clinical results of SGLT2 inhibitors show the importance of this drug class as new anti-T2DM agents with a potential dual effect. Additionally, the preclinical results of SGLT2 inhibitors favor the design and development of more selective new agents. However, several adverse effects could be a potential risk for patients.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Compostos Benzidrílicos/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Humanos , Hipoglicemiantes/efeitos adversos , Sódio/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
10.
Mol Divers ; 26(1): 39-50, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33216257

RESUMO

An N-acylhydrazone scaffold has been used to develop new drugs with diverse biological activities, including trypanocidal activity against different strains of Trypanosoma cruzi. However, their mechanism of action is not clear, although in T. cruzi it has been suggested that the enzyme cruzain is involved. The aim in this work was to obtain new N-propionyl-N'-benzeneacylhydrazone derivatives as potential anti-T. cruzi agents and elucidate their potential mechanism of action by a molecular docking analysis and effects on the expression of the cruzain gene. Compounds 9 and 12 were the most active agents against epimastigotes and compound 5 showed better activity than benznidazole in T. cruzi blood trypomastigotes. Additionally, compounds 9 and 12 significantly increase the expression of the cruzain gene. In summary, the in silico and in vitro data presented herein suggest that compound 9 is a cruzain inhibitor.


Assuntos
Tripanossomicidas , Trypanosoma cruzi , Cisteína Endopeptidases , Simulação de Acoplamento Molecular , Proteínas de Protozoários , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia
11.
Curr Med Chem ; 29(14): 2504-2529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34517794

RESUMO

BACKGROUND: Parasitic diseases caused by protozoa, such as Chagas disease, leishmaniasis, malaria, African trypanosomiasis, amoebiasis, trichomoniasis, and giardiasis, are considered serious public health problems in developing countries. Drug resistance among parasites justifies the search for new therapeutic drugs, and the identification of new targets becomes a valuable approach. In this scenario, the glycolysis pathway, which converts glucose into pyruvate, plays an important role in the protozoa energy supply, and it is therefore considered a promising target. In this pathway, triose phosphate isomerase (TIM) plays an essential role in efficient energy production. Furthermore, protozoa TIM shows structural differences with human enzyme counterparts, suggesting the possibility of obtaining selective inhibitors. Therefore, TIM is considered a valid approach to develop new antiprotozoal agents, inhibiting the glycolysis in the parasite. OBJECTIVE: In this review, we discuss the drug design strategies, structure-activity relationship, and binding modes of outstanding TIM inhibitors against Trypanosoma cruzi, Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania mexicana, Trichomonas vaginalis, and Entamoeba histolytica. RESULTS: TIM inhibitors have mainly shown aromatic systems and symmetrical structure, where the size and type of heteroatom are important for enzyme inhibition. This inhibition is mainly based on the interaction with i) the interfacial region of TIM inducing changes on the quaternary and tertiary structure or ii) with the TIM catalytic region, the main pathways that disable the catalytic activity of the enzyme. CONCLUSION: Benzothiazole, benzoxazole, benzimidazole, and sulfhydryl derivatives stand out as TIM inhibitors. In silico and in vitro studies have demonstrated that the inhibitors bind mainly at the TIM dimer interface. In this review, the development of new TIM inhibitors as antiprotozoal drugs is demonstrated as an important pharmaceutical strategy that may lead to new therapies for these ancient parasitic diseases.


Assuntos
Antiprotozoários , Doença de Chagas , Trypanosoma brucei brucei , Trypanosoma cruzi , Antiprotozoários/química , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Doença de Chagas/tratamento farmacológico , Humanos , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/metabolismo
12.
Braz J Microbiol ; 52(4): 1755-1767, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34494227

RESUMO

Stenotrophomonas' metabolic versatility plays important roles in the remediation of contaminated environment and plant growth promotion. We investigated two Stenotrophomonas strains isolated from textile polluted sewage for their ability to decolorize and degrade azo dyes. Two Stenotrophomonas strains (TepeL and TepeS) were isolated from textile effluents (Tepetitla, Mexico) using the selective agar Stenotrophomonas vancomycin, imipenem, amphotericin B agar (SVIA). Isolates' identity was determined by the sequencing of their partial 16S rRNA fragments. Their abilities to decolorize dyes were tested in a Luria broth supplemented with varying concentrations (50 mg/L-1 g/L) of textile dyes (acidic red, methyl orange, reactive green, acidic yellow, and reactive black). Fourier-transform infrared (FTIR) spectroscopy and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) metabolite analyses were used to determine the effect of the isolates' growth on the dyes (acidic red, methyl orange). We also identified the enzymes that may be involved in the degradation process. Phylogenetic analysis based on the 16S rDNA sequences showed that the isolates belong to the genus Stenotrophomonas. Stenotrophomonas sp. TepeL and TepeS respectively decolorize all the azo dyes at the tested concentration except at 1 g/L and degraded the azo dyes. The degradation resulted in the formation of N, N-dimethyl p-phenylenediamine, and sodium 4-amino-1-naphthalenesulfonate from methyl orange and acid red. TepeL and TepeS rapidly decolorized and degraded the azo dyes tested. This result showed that the two isolates have a good potential for the decontamination of textile effluents.


Assuntos
Compostos Azo , Biodegradação Ambiental , Stenotrophomonas , Têxteis , Ágar , Compostos Azo/metabolismo , Cromatografia Líquida , Corantes/metabolismo , México , Filogenia , RNA Ribossômico 16S/genética , Stenotrophomonas/genética , Stenotrophomonas/metabolismo , Espectrometria de Massas em Tandem , Águas Residuárias/química , Águas Residuárias/microbiologia
13.
Appl Microbiol Biotechnol ; 105(14-15): 5833-5844, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34396489

RESUMO

This study aimed to produce and characterize biosurfactants using the Thermoanaerobacter sp. CM-CNRG TB177 strain isolated from an oil field in Mexico, as well as assessing the influence of different carbon and nitrogen sources on the capacity of the produced surfactant to reduce the surface tension of water. The thin-layer chromatography (TLC) revealed that the obtained extract corresponds to a mono-rhamnolipid; the results of the ultra-performance-liquid chromatography/mass spectrometry (UPLC/MS) analysis revealed that the Thermoanaerobacter sp. CM-CNRG TB177 strain produces a mixture of three rhamnolipids, whose masses correspond to mono-rhamnolipid. The rhamnolipids mixture obtained using 2.5% molasses as carbon source diminished the surface tension of water to 29.67 mNm-1, indicating that the concentration of molasses influenced the capacity of the produced surfactant to reduce the surface tension of water. Also, the microorganism was not capable of growing in the absence of yeast extract as nitrogen source. To the best of our knowledge, the presented results describe for the first time the nature of the biosurfactant produced by a bacterium of the Thermoanaerobacter genus.Key points• Thermoanaerobacter sp. CM-CNRG TB177 produces biosurfactants, and its glycolipid nature is described for the first time.• The HPLC analysis revealed a mixture of three rhamnolipid congeners, and UPLC/MS analysis determined that two of the congeners are the rhamnolipids Rha-C8-C10 and Rha-C12-C10.• The lowest surface tension of 29.67 mNm-1 was obtained with molasses as source of carbon at a 2.5% concentration.


Assuntos
Campos de Petróleo e Gás , Thermoanaerobacter , Glicolipídeos , México , Pseudomonas aeruginosa , Tensoativos
14.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073021

RESUMO

Infectious diseases caused by intestinal protozoan, such as Entamoeba histolytica (E. histolytica) and Giardia lamblia (G. lamblia) are a worldwide public health issue. They affect more than 70 million people every year. They colonize intestines causing primarily diarrhea; nevertheless, these infections can lead to more serious complications. The treatment of choice, metronidazole, is in doubt due to adverse effects and resistance. Therefore, there is a need for new compounds against these parasites. In this work, a structure-based virtual screening of FDA-approved drugs was performed to identify compounds with antiprotozoal activity. The glycolytic enzyme triosephosphate isomerase, present in both E. histolytica and G. lamblia, was used as the drug target. The compounds with the best average docking score on both structures were selected for the in vitro evaluation. Three compounds, chlorhexidine, tolcapone, and imatinib, were capable of inhibit growth on G. lamblia trophozoites (0.05-4.935 µg/mL), while folic acid showed activity against E. histolytica (0.186 µg/mL) and G. lamblia (5.342 µg/mL).


Assuntos
Clorexidina/farmacologia , Entamoeba histolytica/efeitos dos fármacos , Giardia lamblia/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Tolcapona , Antiprotozoários/farmacologia , Reposicionamento de Medicamentos , Tolcapona/farmacologia , Trofozoítos/efeitos dos fármacos
15.
Curr Med Chem ; 28(38): 7910-7936, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33820509

RESUMO

BACKGROUND: Molecules with a phenothiazine scaffold have been considered versatile organic structures with a wide variety of biological activities, such as antipsychotic, anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antimalarial, and trypanocidal, etc. It was first discovered in the 19th century as a histochemical dye, phenothiazine methylene blue. Since then, its derivatives have been studied, showing new activities; moreover, they have also been repurposed. OBJECTIVE: This review aims to describe the main synthetic routes of phenothiazines and, particularly, the anticancer and antiprotozoal activities reported during the second decade of the 2000s (2010 - 2020). RESULTS: Several studies on phenothiazines against cancer and protozoa have revealed that these compounds show IC50 values in the micromolar and near nanomolar range. The structural analyses have revealed that compounds bearing halogens or electron-withdrawing groups at 2-position have favorable anticancer activity. Phenothiazine dyes have shown a photosensitizing activity against trypanosomatids at a micromolar range. Tetra and pentacyclic azaphenothiazines are structures with a high broad-spectrum anticancer activity. CONCLUSION: The phenothiazine scaffold is favorable for developing anticancer agents, especially those bearing halogens and electron-withdrawing groups bound at 2-position with enhanced biological activities through a variety of aromatic, aliphatic and heterocyclic substituents in the thiazine nitrogen. Further studies are warranted along these investigation lines to attain more active anticancer and antiprotozoal compounds with minimal to negligible cytotoxicity.


Assuntos
Antineoplásicos , Antiprotozoários , Antipsicóticos , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Antipsicóticos/farmacologia , Química Farmacêutica , Humanos , Fenotiazinas/farmacologia , Relação Estrutura-Atividade
16.
Acta Pharm ; 71(3): 485-495, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654088

RESUMO

Trichomoniasis is a public health problem worldwide. Trichomoniasis treatment consists of the use of nitroimidazole derivatives; however, therapeutic ineffectiveness occurs in 5 to 20 % of the cases. Therefore, it is essential to propose new pharmacological agents against this disease. In this work, esters of quinoxaline-7-carboxylate-1,4-di-N-oxide (EQX-NO) were evaluated in in vitro assays as novel trichomonicidal agents. Additionally, an in vitro enzyme assay and molecular docking analysis against triosephosphate isomerase of Trichomonas vaginalis to confirm their mechanism of action were performed. Ethyl (compound 12) and n-propyl (compound 37) esters of quinoxaline-7-carboxy-late-1,4-di-N-oxide derivatives showed trichomonicidal activity comparable to nitazoxanide, whereas five methyl (compounds 5, 15, 19, 20 and 22), four isopropyl (compounds 28, 29, 30 and 34), three ethyl (compounds 4, 13 and 23) and one npropyl (compound 35) ester derivatives displayed activity comparable to albendazole. Compounds 6 and 20 decreased 100 % of the enzyme activity of recombinant protein triosephosphate isomerase.

17.
Med Chem ; 17(7): 724-731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32370720

RESUMO

BACKGROUND: Chagas disease, caused by the parasite Trypanosoma cruzi, represents a worldwide epidemiological, economic, and social problem. In the last decades, the trans-sialidase enzyme of Trypanosoma cruzi has been considered an attractive target for the development of new agents with potential trypanocidal activity. OBJECTIVE: In this work, the aim was to find new potential non-sugar trans-sialidase inhibitors using benzoic acid as a scaffold. METHODS: A structure-based virtual screening of the ZINC15 database was carried out. Additionally, the enzyme and trypanocidal activity of the selected compounds was determined. RESULTS: The results of this work detected 487 compounds derived from benzoic acid as potential transsialidase inhibitors with a more promising binding energy value (< -7.7 kcal/mol) than the known inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). In particular, two lead compounds, V1 and V2, turned out to be promising trans-sialidase inhibitors. Even though the trypanocidal activity displayed was low, these compounds showed trans-sialidase inhibition values of 87.6% and 29.6%, respectively. CONCLUSION: Structure-based virtual screening using a molecular docking approach is a useful method for the identification of new trans-sialidase inhibitors.


Assuntos
Ácido Benzoico/química , Ácido Benzoico/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Neuraminidase/antagonistas & inibidores , Trypanosoma cruzi/enzimologia , Ácido Benzoico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Neuraminidase/química , Neuraminidase/metabolismo , Conformação Proteica , Termodinâmica , Trypanosoma cruzi/efeitos dos fármacos , Interface Usuário-Computador
18.
PeerJ ; 8: e8102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934497

RESUMO

BACKGROUND: Stenotrophomonas are ubiquitous gram-negative bacteria, which can survive in a wide range of environments. They can use many substances for their growth and are known to be intrinsically resistant to many antimicrobial agents. They have been tested for biotechnological applications, bioremediation, and production of antimicrobial agents. METHOD: Stenotrophomonas sp. Pemsol was isolated from a crude oil contaminated soil. The capability of this isolate to tolerate and degrade polycyclic aromatic hydrocarbons (PAH) such as anthraquinone, biphenyl, naphthalene, phenanthrene, phenanthridine, and xylene was evaluated in Bushnell Hass medium containing PAHs as the sole carbon sources. The metabolites formed after 30-day degradation of naphthalene by Pemsol were analyzed using Fourier Transform Infra-red Spectroscopic (FTIR), Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). The genome of Pemsol was also sequenced and analyzed. RESULTS: Anthraquinone, biphenyl, naphthalene, phenanthrene, and phenanthridine except xylene can be used as sole carbon sources for Pemsol's growth in Bushnell Hass medium. The degradation of naphthalene at a concentration of 1 mg/mL within 30 days was tested. A newly formed catechol peak and the disappearance of naphthalene peak detected on the UPLC-MS, and GC-MS analyses spectra respectively confirmed the complete degradation of naphthalene. Pemsol does not produce biosurfactant and neither bio-emulsify PAHs. The whole genome was sequenced and assembled into one scaffold with a length of 4,373,402 bp. A total of 145 genes involved in the degradation of PAHs were found in its genome, some of which are Pemsol-specific as compared with other 11 Stenotrophomonas genomes. Most specific genes are located on the genomic islands. Stenotrophomonas sp. Pemsol's possession of few genes that are associated with bio-emulsification gives the genetic basis for its inability to bio-emulsify PAH. A possible degradation pathway for naphthalene in Pemsol was proposed following the analysis of Pemsol's genome. ANI and GGDH analysis indicated that Pemsol is likely a new species of Stenotrophomonas. It is the first report on a complete genome sequence analysis of a PAH-degrading Stenotrophomonas. Stenotrophomonas sp. Pemsol possesses features that make it a good bacterium for genetic engineering and will be an excellent tool for the remediation of crude oil or PAH-contaminated soil.

19.
Parasitol Res ; 119(2): 695-711, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31907668

RESUMO

Amoebiasis is caused by the protozoan Entamoeba histolytica that affects millions of people throughout the world. The standard treatment is metronidazole, however, this drug causes several side effects, and is also mutagenic and carcinogenic. Therefore, the search for therapeutic alternatives is necessary. Quinoxaline 1,4-di-N-oxides (QdNOs) derivatives have been shown to exhibit activity against different protozoan. In the present study, the effects of esters of quinoxaline-7-carboxylate 1,4-di-N-oxide (7-carboxylate QdNOs) derivatives on E. histolytica proliferation, morphology, ultrastructure, and oxidative stress were evaluated, also their potential as E. histolytica thioredoxin reductase (EhTrxR) inhibitors was analyzed. In vitro tests showed that 12 compounds from n-propyl and isopropyl series, were more active (IC50 = 0.331 to 3.56 µM) than metronidazole (IC50 = 4.5 µM). The compounds with better biological activity have a bulky, trifluoromethyl and isopropyl group at R1-, R2-, and R3-position, respectively. The main alterations found in trophozoites treated with some of these compounds included changes in chromatin, cell granularity, redistribution of vacuoles with cellular debris, and an increase in reactive oxygen species. Interestingly, docking studies suggested that 7-carboxylate QdNOs derivatives could interact with amino acid residues of the NADPH-binding domain and/or the redox-active site of EhTrxR. Enzymatic assays demonstrated that selected 7-carboxylate QdNOs inhibits EhTrxR disulfide reductase activity, and diaphorase activity shows that these compounds could act as electron acceptor substrates for the enzyme. Taken together, these data indicate that among the mechanisms involved in the antiamoebic effect of the 7-carboxylate QdNOs derivatives studied, is the induction of oxidative stress and the inhibition of EhTrxR activity.


Assuntos
Entamoeba histolytica/efeitos dos fármacos , Quinoxalinas/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Óxidos N-Cíclicos , Entamoeba histolytica/enzimologia , Ésteres , Humanos , Metronidazol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Quinolinas , Espécies Reativas de Oxigênio/metabolismo
20.
Pak J Pharm Sci ; 32(3 Special): 1447-1452, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31551230

RESUMO

In recent decades, some quinoxaline 1,4-di-N-oxide derivatives have been shown to have better trypanocidal activity than the reference drugs; however, their mechanism of action is not yet clear, although it is suggested that they mainly produce reactive oxygen species that cause oxidative stress and parasite death. Trypanosoma cruzi relies on the enzyme trypanothione reductase, among others, to defend itself against oxidative stress. With the aim of contributing to the elucidation of the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives on Trypanosoma cruzi, this study was carried out to evaluate the effect of methyl 2-amide-3-methylquinoxaline-7-carboxylate 1,4-di-N-oxide (compound M-8) on the expression of the trypanothione reductase gene in an in vitro model on Trypanosoma cruzi epimastigotes of the CL-Brener strain. The results show that compound M-8 does not cause a significant effect on the trypanothione reductase gene, suggesting a mechanism of action not related to oxidative stress.


Assuntos
NADH NADPH Oxirredutases/genética , Proteínas de Protozoários/genética , Quinoxalinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma cruzi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...